Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Physica A ; 609: 128383, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2182338

ABSTRACT

To achieve the aim of immediately halting spread of COVID-19 it is essential to know the dynamic behavior of the virus of intensive level of replication. Simply analyzing experimental data to learn about this disease consumes a lot of effort and cost. Mathematical models may be able to assist in this regard. Through integrating the mathematical frameworks with the accessible disease data it will be useful and outlay to comprehend the primary components involved in the spreading of COVID-19. There are so many techniques to formulate the impact of disease on the population mathematically, including deterministic modeling, stochastic modeling or fractional order modeling etc. Fractional derivative modeling is one of the essential techniques for analyzing real-world issues and making accurate assessments of situations. In this paper, a fractional order epidemic model that represents the transmission of COVID-19 using seven compartments of population susceptible, exposed, infective, recovered, the quarantine population, recovered-exposed, and dead population is provided. The fractional order derivative is considered in the Caputo sense. In order to determine the epidemic forecast and persistence, we calculate the reproduction number R 0 . Applying fixed point theory, the existence and uniqueness of the solutions of fractional order derivative have been studied . Moreover, we implement the generalized Adams-Bashforth-Moulton method to get an approximate solution of the fractional-order COVID-19 model. Finally, numerical result and an outstanding graphic simulation are presented.

2.
Physica A ; 2022.
Article in English | EuropePMC | ID: covidwho-2147085

ABSTRACT

To achieve the aim of immediately halting spread of COVID-19 it is essential to know the dynamic behavior of the virus of intensive level of replication. Simply analysing experimental data to learn about this disease consumes a lot of effort and cost. Mathematical models may be able to assist in this regard. Through integrating the mathematical frameworks with the accessible disease data it will be useful and outlay to comprehend the primary components involved in the spreading of COVID-19. There are so many techniques to formulate the impact of disease on the population mathematically, including deterministic modelling, stochastic modelling or fractional order modelling etc. Fractional derivative modelling is one of the essential techniques for analyzing real-world issues and making accurate assessments of situations. In this paper, a fractional order epidemic model that represents the transmission of COVID-19 using seven compartments of population susceptible, exposed, infective, recovered, the quarantine population, recovered-exposed, and dead population is provided. The fractional order derivative is considered in the Caputo sense. In order to determine the epidemic forecast and persistence, we calculate the reproduction number

3.
Eur Phys J Plus ; 137(7): 802, 2022.
Article in English | MEDLINE | ID: covidwho-1927661

ABSTRACT

To achieve the goal of ceasing the spread of COVID-19 entirely it is essential to understand the dynamical behavior of the proliferation of the virus at an intense level. Studying this disease simply based on experimental analysis is very time consuming and expensive. Mathematical modeling might play a worthy role in this regard. By incorporating the mathematical frameworks with the available disease data it will be beneficial and economical to understand the key factors involved in the spread of COVID-19. As there are many vaccines available globally at present, henceforth, by including the effect of vaccination into the model will also support to understand the visible influence of the vaccine on the spread of COVID-19 virus. There are several ways to mathematically formulate the effect of disease on the population like deterministic modeling, stochastic modeling or fractional order modeling etc. Fractional order derivative modeling is one of the fundamental methods to understand real-world problems and evaluate accurate situations. In this article, a fractional order epidemic model S p E p I p E r p R p D p Q p V p on the spread of COVID-19 is presented. S p E p I p E r p R p D p Q p V p consists of eight compartments of population namely susceptible, exposed, infective, recovered, the quarantine population, recovered-exposed, and dead population. The fractional order derivative is considered in the Caputo sense. For the prophecy and tenacity of the epidemic, we compute the reproduction number R 0 . Using fixed point theory, the existence and uniqueness of the solutions of fractional order derivative have been studied. Furthermore, we are using the generalized Adams-Bashforth-Moulton method, to obtain the approximate solution of the fractional-order COVID-19 model. Finally, numerical results and illustrative graphic simulation are given. Our results suggest that to reduce the number of cases of COVID-19 we should reduce the contact rate of the people if the population is not fully vaccinated. However, to tackle the issue of reducing the social distancing and lock down, which have very negative impact on the economy as well as on the mental health of the people, it is much better to increase the vaccine rate and get the whole nation to be fully vaccinated.

SELECTION OF CITATIONS
SEARCH DETAIL